Senin, 17 November 2008

Arti sahabat

Kata sahabat apakah itu…?

Sahabat adalah seseorang yang bisa kita percayai,seseorang yang kita anggap selalu menemani kita saat suka maupun duka! Mungkin sahabat bisasebagai pengganti ortu yang selalu memberi kita petuah-petuah yang akan mengarahkan kita dalam mencapai cita-cita yang selama ini kita inginkan.sahabat merupakan orang yang bisa kita mintai pertolongan,disaat kita dalam keadaaan yang sangat terjepit. Di saat kita sedang ada masalah sahabat memberi kita motifasi,dukungan,selain itu juga menghibur kita agar kita tidak selalu dalam kegelisahan

Hal-hal yang senang kita lalui bersama dengan sahabat susah pun kita rasakan bersama.jadi sahabat bisa memberi kita arti hidup ini! Selain itu sahabat juga memberi warna dalam kehidupan kita! Tapi terkadang sahabat juga bias marah maupun benci terhadap kita karena hanya hal-hal yang sepele? Mungkin hanya gara-gara sama-sama suka terhadap orang yang kita sukai!

Hal itu bias memutuskan tali persaudaan yang telah kita bangun selama ini, seharusnya hal itu tidak perlu terjadi. Selain itu banyak hal yang bisa meretakkan persaudaraan sebagai contoh “ hanya dengan sekali ucap maka tali persaudaraan yang telah kita bangun selama ini berantakan” Maka hati-hati kalau sedang berbicara seperti kata pepatah “lidah lebih tajam daripada pedang” dan jangan lupa kalau MEMUTUSKAN SAHABAT AKAN LEBIH MUDAH DARI PADA MENCARI SAHABAT.meskipun sahabat itu kaya maupun miskin kita tidak boleh pandang bulu mungkin hanya gara-gara materi trus kita acuhkan sahabat yang miskin semua itu salah. Oleh karena itu jangan sekali-kali kamu sakiti sahabatmu.

Pengenalan Wajah Komponen Elektronika

Kita ketahui bahwa komponen radio itu banyak macamnya. Dari tabung radio yang besar­-besar sampai dengan IC dan dioda yang kecil-­kecil. Untuk mengenal wajah seluruhnya sudah barang tentu memerlukan waktu lama. Namun dalam tulisan ini akan diperkenalkan beberapa jenis saja yang banyak digunakan dalam praktek sehari­-hari.

Kecuali bentuk dan namanya, kita akan pelajari pula secara garis besar fungsi, sifat-sifatnya dan simbol­-simbol­nya dalam gambar circuit diagram. Disamping itu setiap komponen elektronik mempunyai ukuran kekuatannya, ukuran ini dapat dinyatakan dalam berbagai cara, ialah dengan kode huruf, kode angka dan kode warna.

Kode Huruf, kode Angka dan Kode Warna

Untuk menuliskan angka yang besar-­besar misalnya jutaan, puluhan juta dan juga menuliskan angka yang sangat kecil misalnya seperseribu, sepersepuluh juta dan sebagainya akan makan tempat. Terutama penulisan di atas komponen yang kecil­kecil besaran­-besaran tersebut sangat sulit untuk dibaca. Untuk mempersingkat, maka orang mengunakan istilah­-istilah yang ringkas dan sekalian kode­kodenya yang berupa huruf.

GIGA           (G)     = 1.000.000.000 
MEGA           (M)     = 1.000.000 
KILO           (K)     = 1.000 
MILLI          (m)     = 0,001 
MIKRO           (μ)    = 0,000 001 
NANO           (n)     = 0,000 000 001 
PIKO           (p)     = 0,000 000 000 001 

Dengan kode­-kode huruf itu kita dapat menuliskan angka-­angka panjang menjadi ringkas dan praktis untuk dituliskan di atas komponen terutama yang kecil­kecil, misalnya 1.000.000.000 Cycle cukup ditulis 1Mc, 0,000 000 000 001 Farrad cukup ditlis dengan 1pF dan sebagainya.

Untuk angka­-angka pecahan dalam teknik radio biasa digunakan pecahan desimal, ialah dengan tanda baca koma, misalnya satu setengah dituliskan sebagai 1,5 dan sebagainya. Dalam teknik radio tanda baca koma tersebut diganti dengan huruf singkatan besarannya, misalnya 1,5 kilo ditulis 1K5, 5,6 kilo dituliskan 5K6 dan sebagainya. Cara tersebut menguntungkan terutama untuk penulisan pada komponen yang demensinya kecil sehingga tanda baca koma sukar dilihat dan juga dapat dengan mudah terhapus.

Disamping kode huruf, untuk mempersingkat penulisan, dalam teknik radio dikenal juga kode­kode angka. Kode angka ini digunakan untuk menggantikan sejumlah angka nol, misalnya untuk menyingkat angka 1.200.000 dituliskan sebagai 125. Angka yang terakhir, ialah angka lima menggantikan sejumlah angka nol yang ada di belakang angka 12. Cara penulisan semacam ini akan dipergunakan pada kode warna.

Yang diuraikan di atas adalah penggunaan kode angka 3 digit. Kode angka dapat juga dituliskan dengan 4 digit, misalnya menuliskan angka 124.000 dapat ditulis dengan 4 digit, menjadi 1243. Sistem 4 digit ini banyak digunakan pada resistor dengan toleransi 1%. Penulisan tidak dilakukan dengan angka tetapi dengan kode­kode warna.

Angka dapat duwujudkan dalam bentuk kode warna, kode ini dapat berbentuk gelang warna ataupun berupa bundaran yang berjajar. Adapun kode warna itu adalah sebagai berikut ini.

0 =  Hitam
1 =  Cokelat                      
2 =  Merah                         
3 =  Orange                        
4 =  Kuning
5 =  Hijau
6 =  Biru
7 =  Ungu
8 =  Abu­-abu
9 =  Putih

Penggunaan kode warna ini sangat menguntungkan terutama untuk komponen yang kecil­-kecil karena dengan gelang­-gelang warna, angka menjadi mudah terlihat dan tidak mudah terhapus.

Resistor

Di pasaran terdapat berbagai jenis resistor, dapat digolongkan menjadi dua macam ialah resistor tetap yaitu resistor yang nilai tahanannya tetap dan ada yang bisa di­atur­atur dengan tangan, ada juga yang perubahan nilai tahanannya diatur automatis oleh cahaya atau oleh suhu.

Resistansi resistor biasanya dituliskan dengan kode warna yang berbentuk budaran­ bundaran atau bisa juga gelang warna. Adapun satuan yang digunakan adalah OHM (Ω). Kecuali besarnya resistansi, suatu resistor ditandai dengan toleransinya, juga berupa gelang warna yang dituliskan setelah tanda resistansi.

Parameter resistor berikutnya adalah besarnya daya maksimum yang diperkenankan melewatinya. Mengenai daya maksimum ini tidak diberikan tanda oleh pabriknya akan tetapi hanya dilihat dari demensinya saja. Resistor ada yang mempunyai kemampuan 1/8 Watt, 1⁄4 Watt, 1⁄2 Watt, 1 Watt, 2 Watt, 5 Watt dan sebagainya.

Adapun kode warna untuk toleransi adalah sebgai berikut :

1 persen       = Cokelat 
2 persen       = Merah 
5 persen       = Emas 
10 persen      = Perak 

Bahan pembuat resistor dapat digunakan lilitan kawat tahanan atau dapat pula dengan karbon. Dengan lilitan kawat tahanan, maka kecuali resistansi, juga akan memberikan sedikit induktansi. Pada saat ini resistor yang menggunakan karbon sudah tidak banyak terdapat di pasaran.

Resistor Variable (VR)

Nilai resistansi resistor jenis ini dapat diatur dengan tangan, bila pengaturan dapat dilakukan setiap saat oleh operator (ada tombol pengatur) dinamakan potensiometer dan apabila pengaturan dilakukan dengan obeng dinamakan trimmer potensiometer (trimpot). Tahanan dalam potensiometer dapat dibuat dari bahan carbon dan ada juga dibuat dari gulungan kawat yang disebut potensiometer wire­wound. Untuk digunakan pada voltage yang tinggi biasanya lebih disukai jenis wire­wound.

Resistor Peka Suhu dan Resistor Peka Cahaya

Nilai resistansi thermistor tergantung dari suhu. Ada dua jenis yaitu NTC (negative temperature coefficient) dan PTC (positive temperature coefficient). NTC resistansinya kecil bila panas dan makin dingin makin besar. Sebaliknya PTC resistensi kecil bila dingin dan membesar bila panas.

Ada lagi resistor jenis lain ialah LDR (Light Depending Resistor) yang nilai resistansinya tergantung pada sinar / cahaya.

Kapasitor (Kondensator)

Kapasitor dapat menyimpan muatan listrik, dapat meneruskan tegangan bolak balik (AC) akan tetapi menahan tegangan DC, besaran ukuran kekuatannya dinyatakan dalam FARAD (F). Dalam radio, kapasitor digunakan untuk:

1.Menyimpan muatan listrik
2.Mengatur frekuensi
3.Sebagai filter
4.Sebagai alat kopel (penyambung)

Berbagai macam kapasitor digunakan pada radio, ada yang mempunyai kutub positif dan negatif disebut polar . Ada pula yang tidak berkutub, biasa di sebut non-polar. Kondensator elektrolit atau elco dan tantalum adalah kondensator polar. Kondensator dengan solid dialectric biasanya non polar, misalnya keramik, milar, silver mica, MKS (polysterene), MKP (polypropylene), MKC (polycarbonate), MKT (polythereftalate) dan MKL (cellulose acetate).

Disamping nilai kapasitansi, kondensator mempunyai batas kemampuan tegangan (Work Voltage), ialah tegangan maksimum yang diperbolehkan. Penulisan kapasitansi kapasitor masif biasanya memakai code angka tiga digit dengan satuan pF, sedangkan pada elco angka desimal.

Nilai kapasitansi kapasitor dipengaruhi oleh temperatur, diantara berbagai jenis kapasitor yang telah disebutkan di atas, jenis mica atau silver mica adalah yang paling tahan terhadap perubahan suhu.

Kapasitor Variable (VARCO)

Nilai kapasitansi jenis kondensator ini dapat diatur dengan tangan, bila pengaturan dapat dilakukan setiap saat oleh operator (ada tombol pengatur) dinamakan Kapasitor Variabel (VARCO) dan apabila pengaturan dilakukan dengan obeng dinamakan kapasitor trimmer.

Kumparan (Coil)

Coil adalah suatu gulungan kawat di atas suatu inti. Tergantung pada kebutuhan, yang banyak digunakan pada radio adalah inti udara dan inti ferrite. Coil juga disebut inductor, nilai induktansinya dinyatakan dalam besaran Henry (H).

Dalam pesawat radio, coil digunakan :

1.Sebagai kumparan redam 
2.Sebagai pengatur frekuensi 
3.Sebagai filter
4.Sebagai alat kopel (penyambung)

Coil Variabel

Coil variabel adalah coil dengan induktansi yang dapat diubah-­ubah, perubahan dilakukan dengan memutar posisi inti ferrite. Coil semacam ini banyak digunakan pada osilator agar frekuensi dapat diatur­atur, bentuk coil ini serupa dengan trafo IF.

Transformator (Trafo)

Transformator adalah dua buah kumparan yang dililitkan ada satu inti, inti bisa inti besi atau inti ferrite. Ia dapat meneruskan arus listrik AC dan tidak dapat untuk digunakan pada DC. Kumparan pertama disebut primer ialah kumparan yang menerima input, kumparan kedua disebut sekunder ialah kumparan yang menghasilkan output. Dalam pesawat radio, transformator digunakan:

1.Mengubah tegangan listrik (disebut Power Trafo)
2.Sebagai kopel

Power Trafo

Kumparan primer dan sekunder dapat digulung secara terpisah atau dapat juga digulung bersusun. Gulungan primer dan sekundernya bisa berdiri sendiri­-sendiri atau dapat menjadi satu ini disebut autotrafo. Gulungan trafo diberikan TAP ditengah yang disebut disebut trafo center tap.

Trafo Kopel

Trafo kopel digunakan untuk meneruskan listrik AC disertai perubahan impedansi. Kita ketahui bahwa gulungan kawat pada suatu inti tertentu, bila jumlah gulungannya berbeda, cenderung akan memberikan impedansi yang berbeda pula.

Seperti halnya pada power trafo, primer dan sekunder dapat digulung secara terpisah atau dapat juga digulung bersusun. Suatu trafo dengan tap bila gulungan sebelum tap dan sesudah tap symetris disebut bifilar, bila diberi dua tap disebut trifilar.

Cara penggulungan trafo bifilar dilakukan dengan menumpuk dua kawat dan digulung bersama­sama, kemudian kedua ujungnya dihubungkan kembali (disolder). Penyambungan dilakukan sedemikian sehingga kedua gulungan sebelum dan sesudah tap mempunyai arah gulungan yang sama. Demikian juga untuk trifilar, dilakukan dengan menumpuk tiga kawat.

Kristal

Dalam pesawat radio, kristal banyak digunakan pada pembangkit frekuensi tinggi (osilator) agar frekuensi osilator dapat dipertahankan stabil, disamping frekuensi yang stabil, suatu osilator kristal mempunyai bandwidth yang sangat sempit. Kristal yang dipakai dalam pesawat radio kebanyakan adalah sekeping potongan kristal quartz. Frekuensi resonansinya tergantung pada ketebalan kepingannya, misalnya untuk 7 MHz ketebalannya sekitar 0.9 MM.

Seperti kita ketahui bersama bahwa suatu kristal quartz dapat memberikan efek piezoelectric. Material piezoelectric yang lain adalah Garam Rochelle atau nama kimianya Kalium Natrium Tartrat, kristal semacam ini kebanyakan digunakan untuk microphone atau untuk speaker headphone.

Untuk membuat kristal dengan frekuensi yang tinggi (di atas 20 MHz) agak sulit membuat ketebalan yang akurat. Biasanya untuk frekuensi tinggi digunakan kristal dengan frekuensi dibawah, selanjutnya pada osilator diberikan filter sehingga menghasilkan output harmonic­nya. Kristal yang bekerja pada frekuensi sesuai ketebalan kepingan kristal disebut kristal fundamental dan kristal yang bekerja 3 atau 5 kalinya disebut overtone.

Disamping penggunaannya sebagai osilator, microphone dan speaker, kristal juga digunakan sebagai filter. Kristal filter terdiri atas suatu rangkaian kristal berupa ladder filter atau rangkaian lattice filter, kristal yang khusus dibuat untuk filter mempunyai kaki tiga.

Ceramic Filter

Untuk keperluan filter yang tidak memerlukan bandwith sempit (bukan untuk SSB filter), digunakan ceramic filter. Ceramic filter digunakan dalam radio untuk IF filter.

Ceramic filter sebenarnya juga punya kemampuan sebagai osilator ataupun SSB filter, akan tetapi penulis tidak menganjurkan untuk menggunakannya sebagai SSB filter oleh karena bandwidth yang amat lebar, jauh melampaui bandwidth yang diperkenankan dalam radio regulation.

Reley

Reley adalah suatu switch yang digerakkan secara elektris, dalam pesawat radio transceiver digunakan untuk memindah­mindah aliran listrik dari bagian receiver ke bagian transmitter dan memindah-­mindah antena dari receive ke transmit.

Microphone

Berbagai jenis microphone dipakai pada transceiver, akan tetapi yang banyak dipakai adalah dynamic mic dan condensor mic atau electret condensor mic (ECM). Jenis microphone yang lain lagi adalah carbon mic dan crystal mic.

Speaker

Speaker pada radio digunakan untuk mengubah getaran listrik yang berasal dari detector menjadi getaran suara. Dalam speaker terdapat magnet dan suatu kumparan yang dapat bergerak bebas. Kumparan tersebut dihubungkan dengan suatu membran audio. Bila kumparan dilalui oleh arus AC audio, akan bergerak­-gerak dan menggetarkan membran audio.

Coaxial Cable

Untuk menghubungkan transmitter dengan antena bisa digunakan twin lead atau coaxial cable, akan tetapi coaxial cable lebih dikenal karena mudah menggarapnya dan terdapat banyak di pasaran. Suatu parameter penting dari suatu coaxial cable adalah impedansinya, yang dinyatakan dalam satuan OHM.

Dalam coaxial cable terdapat dua konduktor, satu berada ditangah disebut inner dan yang satunya menyelubungi konduktor yang ditengah tadi yang disebut outer, outer ini dihubungkan dengan ground.

Coaxial cable yag banyak terdapat di pasaran dikenal dengan nomor seri RG­8/U dengan diameter luar 10.3 MM dan RG­58A/U dengan diamater luar 5 MM, masing­-masing pempunyai impedansi 50 OHM. Komponen Aktif Radio

Selanjutnya akan di perkenalkan beberapa komponen aktif yang banyak digunakan di radio, komponen tersebut umumnya merupakan komponen semikonduktor. Komponen disebut semiconductor karena bahan utama untuk membuatnya adalah bahan semiconductor, ialah suatu bahan yang dapat bersifat konductor akan tetapi dapat pula bersifat isolator.

Dengan perkembangan di bidang ilmu bahan (material science) yang pesat sehingga diketemukannya bahan-­bahan semiconductor seperti silicon, germanium dan sebagainya serta pengetahuan tentang sifat-­sifatnya, memberikan era baru bagi perkembangan peralatan komunikasi radio.

Teknologi radio dengan tabung­-tabung elektron, sedikit demi sedikit ditinggalkan dan digantikan dengan komponen semiconductor yang kecil, ringan dan lebih hemat energi. Material science berkembang terus dengan pesat dan komponen elektronik menjadi makin kecil dengan kemampuan yang makin besar.

Perkembangan teknologi material seperti sekarang ini yang terintegrasi dengan perkembangan teknologi peroketan memberi peluang melajunya perkembangan di bidang satelit. Satelit dapat memuat berbagai peralatan elektroinik yang canggih­canggih dengan sumber daya dari solar cell yang bobotnya tidak terlalu besar.

Dioda

Dioda adalah komponen semiconductor yang paling sederhana, ia terdiri atas dua (2) elektroda yaitu katoda dan anoda.

Ujung badan dioda biasanya diberi bertanda, berupa gelang atau berupa titik, yang menandakan letak katoda.

Dioda hanya bisa dialiri arus DC searah saja, pada arah sebaliknya arus DC tidak akan mengalir. Apabila dioda silicon dialiri arus AC ialah arus listrik dari PLN, maka yang mengalir hanya satu arah saja sehingga arus output dioda berupa arus DC.

Bila anoda diberi potensial positif dan katoda negatif, dikatakan dioda diberi forward bias dan bila sebaliknya, dikatakan dioda diberi reverse bias. Pada forward bias, perbedaan voltage antara katoda dan anoda disebut threshold voltage atau knee voltage. Besar voltage ini tergantung dari jenis diodanya, bisa 0.2V, 0.6V dan sebagainya.

Bila dioda diberi reverse bias (yang beda voltagenya tergantung dari tegangan catu) tegangan tersebut disebut tegangan terbalik. Tegangan terbalik ini tidak boleh melampaui harga tertentu, harga ini disebut breakdown voltage, misalnya dioda type 1N4001 sebasar 50V.

Dioda jenis germanium misalnya type 1N4148 atau 1N60 bila diberikan forward bias dapat meneruskan getaran frekuensi radio dan bila forward bias dihilangkan, akan mem­blok getaran frekuensi radio tersebut. Adanya sifat ini, dioda jenis tersebut digunakan untuk switch.

Dioda Zener adalah suatu dioda yang mempunyai sifat bahwa tegangan terbaliknya sangat stabil, tegangan ini dinamakan tegangan zener. Di atas tegangan zener, dioda ini akan menghantar listrik ke dua arah. Dioda ini digunakan sebagai voltage stabilizer atau voltage regulator. Bentuk dioda ini seperti dioda biasa, perbedaan hanya dapat dilihat dari type yang tertulis pada bodynya dan zener voltage dilihat pada vademicum.

Suatu jenis dioda yang lain adalah Light Emiting Diode (LED) yang dapat mengeluarkan cahaya bila diberikan forward bias. Dioda jenis ini banyak digunakan sebagai indikator dan display. Misalnya dapat digunakan untuk seven segmen (display angka).

Dioda foto mempunyai sifat lain lagi, yang berkebalikan dengan LED ialah akan menghasilkan arus listrik bila terkena cahaya. Besarnya arus listrik tergantung dari besarnya cahaya yang masuk.

Dioda Kapasitansi Variabel yang disebut juga dioda varicap atau dioda varactor. Sifat dioda ini ialah bila dipasangkan menurut arah terbalik akan berperan sebagai kondensator. Kapasitansinya tergantung pada tegangan yang masuk. Dioda jenis ini banyak digunakan pada modulator FM dan juga pada VCO suatu PLL (Phase Lock Loop).

Untuk membuat penyearah pada power supply, di pasaran banyak terjual dioda bridge. Dioda ini adalah dioda silicon yang dirangkai menjadi suatu bridge dan dikemas menjadi satu kesatuan komponen. Di pasaran terjual berbagai bentuk dioda bridge dengan berbagai macam kapasitasnya. Ukuran dioda bridge yang utama adalah voltage dan ampere maksimumnya.

Banyak sekali penggunaan dioda dan secara umum dioda dapat digunakan antara lain untuk:

1.Pengaman 
2.Penyearah 
3.Voltage regulator 
4.Modulator 
5.Pengendali frekuensi 
6.Indikator 
7.Switch

Thyristor, Triac dan Diac

Pada prinsipnya thyristor atau disebut juga dengan istilah SCR (Silicon Controlled Rectifier) adalah suatu dioda yang dapat menghantar bila diberikan arus gerbang (arus kemudi). Arus gerbang ini hanya diberikan sekejap saja sudah cukup dan thyristor akan terus menghantar walaupun arus gerbang sudah tidak ada. Ini berbeda dengan transistor yang harus diberi arus basis terus menerus.

Triac adalah thyristor yang bekerja untuk AC sedangkan diac akan menahan arus kearah dua belah fihak, tetapi setelah tegangan melampaui suatu harga tertentu, ia akan menghantar secara penuh.

Transistor

Komponen semiconductor selanjutnya adalah transistor, komponen ini boleh dikata termasuk komponen yang susunannya sederhana bila dibandingkan dengan Integrated Circuit.

Pada prinsipnya, suatu transistor terdiri atas dua buah dioda yang disatukan. Agar transistor dapat bekerja, kepada kaki­kakinya harus diberikan tegangan, tegangan ini dinamakan bias voltage. Basis­emitor diberikan forward voltage, sedangkan basis­kolektor diberikan reverse voltage. Sifat transistor adalah bahwa antara kolektor dan emitor akan ada arus (transistor akan menghantar) bila ada arus basis. Makin besar arus basis makin besar penghatarannya.

Berbagai bentuk transistor yang terjual di pasaran, bahan selubung kemasannya juga ada berbagai macam misalnya selubung logam, keramik dan ada yang berselubung polyester. Transistor pada umumnya mempunyai tiga kaki, kaki pertama disebut basis, kaki berikutnya dinamakan kolektor dan kaki yang ketiga disebut emitor.

Suatu arus listrik yang kecil pada basis akan menimbulkan arus yang jauh lebih besar diantara kolektor dan emitornya, maka dari itu transistor digunakan untuk memperkuat arus (amplifier).

Terdapat dua jenis transistor ialah jenis NPN dan jenis PNP. Pada transistor jenis NPN tegangan basis dan kolektornya positif terhadap emitor, sedangkan pada transistor PNP tegangan basis dan kolektornya negatif terhadap tegangan emitor.

Transistor dapat dipergunakan antara lain untuk:

1.Sebagai penguat arus, tegangan dan daya (AC dan DC) 
2.Sebagai penyearah 
3.Sebagai mixer 
4.Sebagai osilator 
5.Sebagai switch

Uni Junktion Transistor (UJT)

Uni Junktion Transistor (UJT) adalah transistor yang mempunyai satu kaki emitor dan dua basis. Kegunaan transistor ini adalah terutama untuk switch elektronis. Ada Dua jenis UJT ialah UJT Kanal ­N dan UJT Kanal­ P.

Field Effect Transistor (FET)

Field Effect Transistor (FET) adalah suatu jenis transistor khusus. Tidak seperti transistor biasa, yang akan menghantar bila diberi arus di basis, transistor jenis FET akan menghantar bila diberikan tegangan (jadi bukan arus). Kaki­-kakinya diberi nama Gate (G), Drain (D) dan Source (S).

Beberapa Kelebihan FET dibandingkan dengan transistor biasa ialah antara lain penguatannya yang besar, serta desah yang rendah. Karena harga FET yang lebih tinggi dari transistor, maka hanya digunakan pada bagian­bagian yang memang memerlukan. Ujud fisik FET ada berbagai macam yang mirip dengan transistor.

Seperti halnya transistor, ada dua jenis FET yaitu Kanal­ N dan Kanal­ P. Kecuali itu terdapat beberapa macam FET ialah Junktion FET (JFET) dan Metal Oxide Semiconductor FET (MOSFET).

MOSFET

Metal Oxide Semiconductor FET (MOSFET) adalah suatu jenis FET yang mempunyai satu Drain, satu Source dan satu atau dua Gate. MOSFET mempunyai input impedance yang sangat tinggi. Mengingat harga yang cukup tinggi, maka MOSFET hanya digunakan pada bagian­ bagian yang benar­benar memerlukannya. Penggunaannya misalnya sebagai RF amplifier pada receiver untuk memperoleh amplifikasi yang tinggi dengan desah yang rendah.

Dalam pengemasan dan perakitan dengan menggunakan MOSFET perlu diperhatiakan bahwa komponen ini tidak tahan terhadap elektrostatik, mengemasnya menggunakan kertas timah, pematriannya menggunakan jenis solder yang khusus untuk pematrian MOSFET.

Seperti halnya pada FET, terdapat dua macam MOSFET ialah Kanal ­P dan Kanal ­N.

Integrated Circuit

Integrated Circuit (IC) sebenarnya adalah suatu rangkaian elektronik yang dikemas menjadi satu kemasan yang kecil. Beberapa rangkaian yang besar dapat diintegrasikan menjadi satu dan dikemas dalam kemasan yang kecil. Suatu IC yang kecil dapat memuat ratusan bahkan ribuan komponen.

Bentuk IC bisa bermacam­-macam, ada yang berkaki 3 misalnya LM7805, ada yang seperti transistor dengan kaki banyak misalnya LM741.

Bentuk IC ada juga yang menyerupai sisir (single in line), bentuk lain adalah segi empat dengan kaki-­kaki berada pada ke­ empat sisinya, akan tetapi kebanyakan IC berbentuk dual in line (DIL).

IC yang berbentuk bulat dan dual in line, kaki-­kakinya diberi bernomor urut dengan urutan sesuai arah jarum jam, kaki nomor SATU diberikan bertanda titik atau takikan.

Setiap IC ditandai dengan nomor type, nomor ini biasanya menunjukkan jenis IC, jadi bila nomornya sama maka IC tersebut sama fungsinya. Kode lain menunjukkan pabrik pembuatnya, misalnya operational amplifier type 741 dapat muncul dengan tanda uA­741, LM­741, MC­741, RM­741 SN72­741 dan sebagainya.

Suatu kelompok IC disebut IC linear, antara lain IC regulator, Operational Amplfier, audio amplifier dan sebagainya. Sedangkan kelompok IC lain disebut IC digital misalnya NAND, NOR, OR, AND EXOR, BCD to seven segment decoder dan sebagainya.

Jenis IC yang sekarang berkembang dan banyak digunakan adalah Transistor­-Transistor Logic (TTL) dan Complimentary Metal Oxide Semiconductor (CMOS).

Jenis CMOS banyak terdapat di pasaran ialah keluarga 4000, misalnya 4049, 4050 dan sebagainya. Jenis TTL ditandai dengan nomor awal 54 atau 74. Prefix 54 menandakan persyaratan militer ialah mampu bekerja dari suhu ­54 sampai 125C. Sedangkan prefix 74 menandakan persyaratan komersial ialah mampu bekerja pada suhu 0 sampai 70C.

Penomoran TTL dilakukan dengan 2, 3 atau 4 digit angka mengikuti prefix­nya, misalnya 7400, 74192 dan sebagainya. Huruf yang berada diantara prefix dan suffix menandakan subfamily­nya. Misalnya AS (Advance Schottkey), ALS (Advance Low Power Schottkey), H (High Speed), L (Low Speed), LS (Low Power Schottkey) dan S (Schottkey).

Apabila dibandingkan rangkaian dengan menggunakan transistor dengan rangkaian menggunakan IC, cenderung penggunaan IC lebih praktis dan biayanya relatif ebih ringan.

Pada saat ini sudah berkembang banyak sekali jenis IC, jenisnya sampai ratusan sehingga tidak mungkin dibicarakan secara umum. Untuk menggunakan IC kita harus mempunyai vademicum IC yang diterbitkan oleh pabrik­-pabrik pembuatnya. Setiap jenis IC mempunyai penjelasan sendiri­-sendiri mengenai sifatnya dan cara penggunaannya.

Apabila kita membuka lembaran vademicum IC, kita akan melihat berbagai symbol IC logic. Arti symbol­-symbol ini akan kita pelajari bila sudah mulai eksperimen dengan IC digital.

Dengan mempelajari rangkaian suatu IC, yang terdiri atas begitu banyak komponen, maka dapat kita bayangkan bahwa piranti tersebut praktis tidak mungkin lagi dirangkai dengan menggunakan tabung-­tabung electron

. Resistor atau yang biasa disebut (bahasa Belanda) werstand, tahanan atau penghambat, adalah suatu komponen elektronik yang memberikan hambatan terhadap perpindahan elektron (muatan negatif).

Resistor disingkat dengan huruf "R" (huruf R besar). Satuan resistor adalah Ohm, yang menemukan adalah George Ohm (1787-1854), seorang ahli fisika bangsa Jerman. Tahanan bagian dalam ini dinamai konduktansi. Satuan konduktansi ditulis dengan kebalikan dari Ohm yaitu mho.

Kemampuan resistor untuk menghambat disebut juga resistensi atau hambatan listrik. Besarnya diekspresikan dalam satuan Ohm. Suatu resistor dikatakan memiliki hambatan 1 Ohm apabila resistor tersebut menjembatani beda tegangan sebesar 1 Volt dan arus listrik yang timbul akibat tegangan tersebut adalah sebesar 1 ampere, atau sama dengan sebanyak 6.241506 × 1018 elektron per detik mengalir menghadap arah yang berlawanan dari arus.

Hubungan antara hambatan, tegangan, dan arus, dapat disimpulkan melalui hukum berikut ini, yang terkenal sebagai [[hukum Ohm: . . .

R = \frac{V}{I}

di mana V adalah beda potensial antara kedua ujung benda penghambat, I adalah besar arus yang melalui benda penghambat, dan R adalah besarnya hambatan benda penghambat tersebut.

Berdasarkan penggunaanya, resistor dapat dibagi:

  1. Resistor Biasa (tetap nilainya), ialah sebuah resistor penghambat gerak arus, yang nilainya tidak dapat berubah, jadi selalu tetap (konstan). Resistor ini biasanya dibuat dari nikelin atau karbon.
  2. Resistor Berubah (variable), ialah sebuah resistor yang nilainya dapat berubah-ubah dengan jalan menggeser atau memutar toggle pada alat tersebut. Sehingga nilai resistor dapat kita tetapkan sesuai dengan kebutuhan. Berdasarkan jenis ini kita bagi menjadi dua, Potensiometer, rheostat dan Trimpot (Trimmer Potensiometer) yang biasanya menempel pada papan rangkaian (Printed Circuit Board, PCB).
  3. Resistor NTC dan PTS, NTC (Negative Temperature Coefficient), ialah Resistor yang nilainya akan bertambah kecil bila terkena suhu panas. Sedangkan PTS (Positife Temperature Coefficient), ialah Resistor yang nilainya akan bertambah besar bila temperaturnya menjadi dingin.
  4. LDR (Light Dependent Resistor), ialah jenis Resistor yang berubah hambatannya karena pengaruh cahaya. Bila cahaya gelap nilai tahanannya semakin besar, sedangkan cahayanya terang nilainya menjadi semakin kecil.

Gelang Warna pada Resistor

Pada Resistor biasanya memiliki 4 gelang warna, gelang pertama dan kedua menunjukkan angka, gelang ketiga adalah faktor kelipatan, sedangkan gelang ke empat menunjukkan toleransi hambatan. Pertengahan tahun 2006, perkembangan pada komponen Resistor terjadi pada jumlah gelang warna. Dengan komposisi: Gelang Pertama (Angka Pertama), Gelang Kedua (Angka Kedua), Gelang Ketiga (Angka Ketiga), Gelang Keempat (Multiplier) dan Gelang Kelima (Toleransi).

Berikut Gelang warna dimulai dari warna Hitam, Coklat, Merah, Jingga, Kuning, Hijau, Biru, Ungu (violet), Abu-abu dan Putih.

Warna

Gelang Pertama

Gelang Kedua

Gelang Ketiga (multiplier)

Gelang ke Empat (toleransi)

Temp. Koefisien

Hitam

0

0

×100

Coklat

1

1

×101

±1% (F)

100 ppm

Merah

2

2

×102

±2% (G)

50 ppm

Jingga

3

3

×103

15 ppm

Kuning

4

4

×104

25 ppm

Hijau

5

5

×105

±0.5% (D)

Biru

6

6

×106

±0.25% (C)

Ungu

7

7

×107

±0.1% (B)

Abu-abu

8

8

×108

±0.05% (A)

Putih

9

9

×109

Emas

×0.1

±5% (J)

Perak

×0.01

±10% (K)

Polos

±20% (M)

Sedangkan untuk gelang toleransi hambatan adalah: Coklat 1%, Merah 2%, Hijau 0,5%, Biru 0,25%, Ungu 0,1%, Emas 5% dan Perak 10%. Kebanyakan gelang toleransi yang dipakai oleh umum adalah warna Emas, Perak dan Coklat.

Pranala luar

Dioda

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Langsung ke: navigasi, cari

Dioda adalah sambungan bahan p-n yang berfungsi terutama sebagai penyearah. Bahan tipe-p menjadi sisi anode sedangkan bahan tipe-n menjadi katode. Bergantung pada polaritas tegangan yang diberikan kepadanya, diode bisa berlaku sebagai sebuah saklar tertutup (apabila bagian anode mendapatkan tegangan positif sedangkan katodenya mendapatkan tegangan negatif) dan berlaku sebagi saklar terbuka (apabila bagian anode mendapatkan tegangan negatif sedangkan katode mendapatkan tegangan positif). Kondisi tersebut terjadi hanya pada diode ideal-konseptual. Pada diode faktual (riil), perlu tegangan lebih besar dari 0,7V (untuk diode yang terbuat dari bahan silikon) pada anode terhadap katode agar diode dapat menghantarkan arus listrik. Tegangan sebesar 0,7V ini disebut sebagai tegangan halang (barrier voltage). Diode yang terbuat dari bahan Germanium memiliki tegangan halang kira-kira 0,3V.

  • dioda pemancar cahaya atau LED adalah dioda yang memancarkan cahaya bila dipanjar maju. LED dibuat dari semikonduktor campuran seperti Galium arsenida fosfida (GaAsP), Galium fosfida (GaP), Galium indium fosfida (GaInP), Galium aluminium arsenida (GaAlAs) dsb.
  • dioda foto (fotovoltaic) digunakan untuk mengubah energi cahaya menjadi energi listrik searah
  • dioda laser digunakan untuk membangkitkan sinar laser taraf rendah, cara kerjanya mirip LED
  • dioda Zener digunakan untuk regulasi tegangan

Sebuah dioda biasanya dianggap sebagai alat yang menyalurkan listrik ke satu arah, namun Dioda Zener dibuat sedemikian rupa sehingga arus dapat mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas "tegangan rusak" (breakdown voltage) atau "tegangan Zener".

Dioda yang biasa tidak akan mengijinkan arus listrik untuk mengalir secara berlawanan jika dicatu-balik (reverse-biased) di bawah tegangan rusaknya. Jika melampaui batas tegangan rusaknya, dioda biasa akan menjadi rusak karena kelebihan arus listrik yang menyebabkan panas. Namun proses ini adalah reversibel jika dilakukan dalam batas kemampuan. Dalam kasus pencatuan-maju (sesuai dengan arah gambar panah), dioda ini akan memberikan tegangan jatuh (drop voltage) sekitar 0.6 Volt yang biasa untuk dioda silikon. Tegangan jatuh ini tergantung dari jenis dioda yang dipakai.

Sebuah dioda Zener memiliki sifat yang hampir sama dengan dioda biasa, kecuali bahwa alat ini sengaja dibuat dengan tengangan rusak yang jauh dikurangi, disebut tegangan Zener. Sebuah dioda Zener memiliki p-n junction yang memiliki doping berat, yang memungkinkan elektron untuk tembus (tunnel) dari pita valensi material tipe-p ke dalam pita konduksi material tipe-n. Sebuah dioda zener yang dicatu-balik akan menunjukan perilaku rusak yang terkontrol dan akan melewatkan arus listrik untuk menjaga tegangan jatuh supaya tetap pada tegangan zener. Sebagai contoh, sebuah diode zener 3.2 Volt akan menunjukan tegangan jatuh pada 3.2 Volt jika diberi catu-balik. Namun, karena arusnya tidak terbatasi, sehingga dioda zener biasanya digunakan untuk membangkitkan tegangan referensi, atau untuk menstabilisasi tegangan untuk aplikasi-aplikasi arus kecil.

Tegangan rusaknya dapat dikontrol secara tepat dalam proses doping. Toleransi dalam 0.05% bisa dicapai walaupun toleransi yang paling biasa adalah 5% dan 10%.

Efek ini ditemukan oleh seorang fisikawan Amerika, Clarence Melvin Zener.

Mekanisme lainnya yang menghasilkan efek yang sama adalah efek avalanche, seperti di dalam dioda avalanche. Kedua tipe dioda ini sebenarnya dibentuk melalui proses yang sama dan kedua efek sebenarnya terjadi di kedua tipe dioda ini. Dalam dioda silikon, sampai dengan 5.6 Volt, efek zener adalah efek utama dan efek ini menunjukan koefisiensi temperatur yang negatif. Di atas 5.6 Volt, efek avalanche menjadi efek utama dan juga menunjukan sifat koefisien temperatur positif.

Dalam dioda zener 5.6 Volt, kedua efek tersebut muncul bersamaan dan kedua koefisien temperatur membatalkan satu sama lainnya. Sehingga, dioda 5.6 Volt menjadi pilihan utama di aplikasi temperatur yang sensitif.

Teknik-teknik manufaktur yang modern telah memungkinkan untuk membuat dioda-dioda yang memiliki tegangan jauh lebih rendah dari 5.6 Volt dengan koefisien temperatur yang sangat kecil. Namun dengan munculnya pemakai tegangan tinggi, koefisien temperatur muncul dengan singkat pula. Sebuah dioda untuk 75 Volt memiliki koefisien panas yang 10 kali lipatnya koefisien sebuah dioda 12 Volt.

Semua dioda di atas, tidak perduli berapapun tenganan rusaknya, biasanya dijual dinamakan dioda Zener.

Pemakaian

Dioda Zener biasanya digunakan secara luas dalam sirkuit elektronik. Fungsi utamanya adalah untuk menstabilkan tegangan. Pada saat disambungkan secara parallel dengan sebuah sumber tegangan yang berubah-ubah yang dipasang sehingga mencatu-balik, sebuah dioda zener akan bertingkah seperti sebuah kortsleting (hubungan singkat) saat tegangan mencapai tegangan rusak diode tersebut. Hasilnya, tegangan akan dibatasi sampai ke sebuah angka yang telah diketahui sebelumnya.

Sebuah dioda zener juga digunakan seperti ini sebagai regulator tegangan shunt (shunt berarti sambungan parallel, dan regulator tegangan sebagai sebuah kelas sirkuit yang memberikan sumber tegangan tetap

.

Cara Praktis Membuat PCB

Posted on May 5th, 2008 by Jufryendri

Printed Circuit Board

Cara membuat PCB berikut ini menurut pengalaman adalah cara yang paling praktis, selain biayanya sangat murah, hasilnya juga tidak kalah menarik dan rapi dibanding dengan cara menulis langsung dengan spidol permanen, Sablon (Rugos atau sablon cat), atau pakai media Transfer Paper (original) yang harganya lumayan mahal.
Sebagian besar orang mungkin sudah tidak asing lagi dengan metode ini, namun bagi yang belum terbiasa tidak ada salahnya untuk mencoba, apalagi saat sekarang perancangan jalur PCB telah sangat mudah dilakukan dengan komputer.

Bahan-bahan dan peralatan yang harus disiapkan adalah :
1. Printer Laser Jet (Tinta Toner) jika tidak ada bisa memakai hasil Foto Copy-an
2. Kertas (bekas) Kalender dinding yang tidak kusut
3. Papan PCB
4. Amplas kertas halus (abrasive paper)
5. Setrika listrik
6. Ferri Cloride (FeCl3)
7. Bor PCB
8. Pisau (Cutter)
9. Penggaris (stainless steel)
10. Spidol permanent (jika diperlukan)
11. Komputer + salah satu Software (TraxMaker, Protel, Eagle, DipTrace, ExpressPCB dsb. )

Pemindahan jalur ke papan PCB

• Gambar dari Program PCB diprint ke kertas bekas Kalender (tentunya disisi yang masih kosong, usahakan kertas kalender dipilih yang masih bersih).

• Jika printer Toner tidak ada, maka bisa di print ke kertas biasa lalu di Foto Copy, tapi hasil Foto Copynya (Target) harus diatas kertas Kalender.

• Setelah ter-print ke kertas kalender dan memastikan tidak ada jalur yang putus, guntinglah gambar PCB tersebut kira-kira 2-3mm diluar garis gambar.
• Potong PCB dengan pisau Cutter seukuran gambar PCB yang baru saja di-print,
ratakan pinggiran PCB sampai rata dan tidak tajam.
• Ampelas seluruh permukaan PCB sambil dibasahi dengan air, lakukan proses
pengampelasan dengan cara memutar searah jarum jam sampai bersih, lalu keringkan.
• Panaskan Setrika, set pengatur panas kira-kira 1/4.
• Posisikan gambar PCB diatas papan PCB, jalur PCB (tinta Toner) menghadap ke papan PCB (tembaga).
• Diatas kertas kalender lapisi dengan kertas biasa, agar Text yg ada di kalender
tidak menempel ke permukaan Setrika.
• Tekan Setrika agak kuat diatas kerta kalender yang sudah dilapisi dgn kertas biasa
tadi sampai kira-kira 30 detik sampai gambar menempel ke papan PCB dan lakukan
penggosokan secara merata ke permukaan yg lain.
• Waktu yang diperlukan selama proses setrika +/- 3 menit, jangan sampai lebih dari
4 menit karena jika terlalu lama biasanya gambar akan melebar/pudar.
• Setelah kertas kalender menempel ke PCB lalu dinginkan papan PCB dengan cara
di angin-anginkan, jangan sekali-kali langsung direndam ke air atau diblow dengan
udara dingin / AC, gambar (toner) bisa terkelupas sewaktu masuk pada proses
selanjutnya.
• Jika sudah benar-benar dingin, rendam papan PCB ke dalam air selama +/- 15 s/d
30 menit, tergantung dari tebal/tipisnya kertas kalender, hingga kertas kalender
nampak basah pada permukaan bagian dalam, biasanya jika menggunakan kertas
kalender yang tipis, kertas akan terkelupas (mengapung) dengan sendirinya.

• Lepaskan kertas kalender pelan-pelan dengan tangan sampai gambar/jalur nampak, lalu sedikit-demi sedikit bersihkan sisa-sisa kertas yang masih nempel dengan bantuan sikat gigi bekas, terutama kertas yang nempel pada bagian lubang/pads komponen dan diantara jalur-jalur sampai bersih.
• Jika terdapat jalur yang putus, baru gunakan Spidol permanent untuk membantu menyambungnya.

Proses pelarutan PCB.
• Masukkan Ferric Cloride (FeCl3) secukupnya ke dalam wadah plastic (paling tidak 1 bungkus kemasan), dan masukkan air panas/hangat secukupnya +/- 100ml (1/2 gelas), sampai seluruhnya lebur dengan air.
• Masukkan papan PCB kedalam larutan Ferri Cloride (FeCl3) tadi, dan agar prosesnya lebih cepat, bantu dengan cara menggoyang-goyang wadahnya .
• Sambil diamati jika papan PCB sudah seluruhnya lebur, maksudnya tembaga yang tidak tertutup oleh gambar/toner, maka angkat papan PCB dan bersihkan dengan
air yang mengalir (air kran).
• Untuk membersihkan gambar/toner, gosokan amplas pelan-pelan sambil disiram air kran sampai benar-benar bersih.
• Periksa kembali apakah terdapat jalur yang putus.
• Bor papan PCB sesuai besarnya kaki komponen (0,8mm s/d 1,5mm)
• Bersihkan papan PCB.
• Papan PCB siap untuk dipasang komponen.

sumber: